Factorization Identities for Reflected Processes, with Applications

نویسندگان

  • Brian H. Fralix
  • Johan van Leeuwaarden
  • Onno J. Boxma
چکیده

We derive factorization identities for a class of preemptive-resume queueing systems, with batch arrivals and catastrophes that, whenever they occur, eliminate multiple customers present in the system. These processes are quite general, as they can be used to approximate Lévy processes, diffusion processes, and certain types of growth-collapse processes; thus, all of the processes mentioned above also satisfy similar factorization identities. In the Lévy case, our identities simplify to both the well-known Wiener-Hopf factorization, and another interesting factorization of reflected Lévy processes starting at an arbitrary initial state. We also show how the ideas can be used to derive transforms for some well-known state-dependent/inhomogeneous birth-death processes and diffusion processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Meromorphic Lévy Processes and Their Fluctuation Identities by A. Kuznetsov,

The last couple of years has seen a remarkable number of new, explicit examples of the Wiener–Hopf factorization for Lévy processes where previously there had been very few. We mention, in particular, the many cases of spectrally negative Lévy processes in [Sixth Seminar on Stochastic Analysis, Random Fields and Applications (2011) 119–146, Electron. J. Probab. 13 (2008) 1672–1701], hyper-expon...

متن کامل

$n$-factorization Property of Bilinear Mappings

In this paper, we define a new concept of factorization for a bounded bilinear mapping $f:Xtimes Yto Z$, depended on  a natural number $n$ and a cardinal number $kappa$; which is called $n$-factorization property of level $kappa$. Then we study the relation between $n$-factorization property of  level $kappa$ for $X^*$ with respect to $f$ and automatically boundedness and $w^*$-$w^*$-continuity...

متن کامل

A Projected Alternating Least square Approach for Computation of Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a common method in data mining that have been used in different applications as a dimension reduction, classification or clustering method. Methods in alternating least square (ALS) approach usually used to solve this non-convex minimization problem.  At each step of ALS algorithms two convex least square problems should be solved, which causes high com...

متن کامل

A Comparative Analysis of Institutional Identities in a Corpus of English and Persian News Interviews

Institutional identity as a concept in CDA is a field of study that deals with the identities that individuals in institutions obtain, one that merits deep research attention. News interviews as institutional instances can be analyzed based on the impersonal structures because interviewees see themselves as part of the institution and they may not take responsibility when they encounter problem...

متن کامل

Applications of factorization embeddings for Lévy processes

We give three applications of the Pecherskii-Rogozin-Spitzer identity for Lévy processes: • Phase-type upward jumps: we find the joint distribution of the supremum and the epoch at which it is ‘attained’ if a Lévy process has phase-type upward jumps. We also find the characteristics of the ladder process. • Perturbed risk models: we establish general properties, and obtain explicit fluctuation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Probability

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2013